
ReTeLL (April 2017), Vol. 17

~53~

Matching the Users of a Website Using SVM Technique

………………………………………………………………………….……………………………………………………………………………………………….…………………….

Dr. C. Muthu
Associate Professor, Department of Statistics

St. Joseph’s College (Autonomous), Tiruchirappalli

&

M. C. Prakash
PG Student, Bharathidasan University Institute of Management

Bharathidasan University, Tiruchirappalli

Abstract

The more information the business organizations have on their customers, the

better they are able to predict their preferences and customize their offerings,

fostering customer trust and leading to a significant improvement in the business.

In this paper, the SVM technique is applied to the dataset pertaining to matching

people on a website. Given the information about any two users of this website,

it is possible to predict whether they will be a good match.

Key Terms

Support-Vector Machines, Machine Learning Algorithms

Introduction

The emerging field of data science is dominated by the application of advanced

statistical algorithms.[1] The Hadoop ecosystem is now extensively used for

successfully implementing the advanced statistical algorithms on the big data.[2]

The dataset we will use in this study is obtained from the portsmouthmatch

maker.com site, which is currently enhanced by Shalom InfoTech. This website

collects a lot of interesting information about their users, including demographic

information, interests, and behaviour. To be more specific, this site collects the

following data about its users: age, smoker/non-smoker, want children/don’t want

children, list of interests, location. This website also collects information about

whether two people have made a good match, whether they initially made contact,

and if they decided to meet in person. These data are used to create the

matchmaker dataset, which contains the two data files namely matchdetails.csv

and agedetails.csv. A sample matchdetails.csv file is shown below:

29, yes, no, skiing : knitting : dancing, 220 w 42nd St New York NY

23, no, yes, soccer : reading : scrabble, 824 3rd Ave, New York NY, 0

25, no, no, football : fashion, 102 1st Ave New York NY

30, no, no, snowboarding : knitting : computers : shopping : tv : travel, 151 W

 34th St New York NY, 1

32, no, no, fashion : opera : tv : travel, 686 Avenue of the Americas New York NY

29, yes, yes, soccer : fashion : photography : computers : camping : movies : tv,
 824 3rd Ave New York NY, 0

ReTeLL (April 2017), Vol. 17

~54~

Each set of the two rows in the above data set contains information about a man

and woman and, in the final column, a 1 or a 0 to indicate whether or not they are

considered a good match. Once this website collects a large number of profiles,

this information may be used to build a predictive algorithm that assists users in

finding other people who are likely to be good matches. It may also indicate

particular types of people that the site is lacking, which will be useful in devising

strategies for promoting the site to new members. The agedetails.csv file has

match information based only on age.

We now create a new python file called classifydata.py and add the matchrows

class and the loadmatches() function to this file.

 class matchrows:

 def - init -- (self, row, allnum = False):

 if allnum:

 self.data = [float(row[i]) for i in range (len(row) – 1)]

 else:

 self.data = row [0.len(row) – 1]

 self.matches= int (row[len(row) – 1])

 def loadmatches (f, allnum = False):

 rows = []

 for line in file (f):

 rows.append (matchrows (line.split(‘,’), allnum))

 return rows

The above loadmatches() function creates a list of matchrows classes, each

containing the raw data and whether or not there was a match. We shall use this

function to load both the agedetails dataset and the matchdetails data set:

 >>> import classifydata

 >>> agedetails = classifydata.loadmatches (‘agedetails.csv’, allnum = True)

 >>> matchdetails = classifydata.loadmatches (‘matchdetails.csv’)

Two interesting aspects of this dataset are the non-linearity and the interplay of

the variables. The matchdetails dataset contains numerical data and categorical

data. Some classifiers, like the decision tree, can handle both data types without

any preprocessing. But the SVM classifier works only with numerical data. In

order to handle this problem, we have to turn data into numbers so that it will be

useful to the classifier. We now convert the “yes” into 1 and a “no” into -1. The

missing or ambiguous data will be converted into 0. We now add the following

yesno() function to classifydata.py.

 def yesno(v) :

 if v == ‘yes’ : return 1

 elseif v == ‘no’ : return –1

 else : return 0

ReTeLL (April 2017), Vol. 17

~55~

In order to treat every possible interest (knitting, dancing, etc.) as a separate

numeric variable, we shall assign a 1 if the person has that interest and a 0 if he

does not. If we are dealing with individual people, this is the best approach. But,

in our study, we have pairs of people. So, a more intuitive approach is to use the

number of common interests as a variable. We will now add the following

countmatches() function to classifydata.py:

 def countmatches (interest1, interest2) :

 l1 = interest1.split(‘:’)

 l2 = interest2.split(‘:’)

 x = 0

 for v in l1:

 if v in l2 : x += 1

 return x

In order to use the python open-source library LIBSVM on the matchdetails

dataset, we convert it to the tuple of lists. We do it as follows:

 >>> answers, inputs = [r.match for r in scaledset], [r.data for v in scaledset]

We are using the scaled data here to prevent overweighting of variables, as this

improves the performance of the SVM algorithm. We use this new function to

generate the new dataset and build a SVM model by using a radial-basis function

as the kernel:

 >>> paramet = svm-parameter (kernel-type = RBF)

 >>> proba = svm-problem (answers, inputs)

 >>> m = svm-model (proba, paramet)

Now, we can make predictions about whether people with a given set of attributes

will be a match or not. We have to use the scalef() function to scale the data we

want predictions for, so that the variables are on the same scale as the ones with

which we built the model:

 >>> newrow = [28.0, –1, –1, 26.0, –1, 1, 2, 0.8] # Man doesn’t want

 # children, Woman does

 >>> m. predict (scalef(newrow))

 0.0

 >>> newrow = [28.0, –1, 1, 26.0, –1, 1, 2, 0.8] # Both want children

 >>> m.predict (scalef(newrow))

 1.0

Although this appears to give good predictions, it is preferable to test how good

they really are so that we can choose the best parameters for our basis function.

The cross-validation() function of LIBSVM automatically divides the dataset

into training sets and test sets. The training sets are used to build the model, and

the test sets are used to test the model to see how well it makes predictions.

ReTeLL (April 2017), Vol. 17

~56~

We can now test the quality of our model by using the cross-validation () function

provided by LIBSVM. This function takes a parameter, n, and divides the dataset

into n subsets. It then uses each subset as a test set and trains the model with all

the other subsets. It returns a list of answers that we can compare to the original

list.

 >>> guesses = cross-validation (proba, paramet, 4)

 >>> guesses

 [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, ...

 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ...

 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, ...

]

 >>> sum ([abs(answers[i] - guesses[i] for i in range(len(guesses))])

 29.0

The number of differences between the answers and the guesses is 29. Since there

were 500 rows in the original dataset, this means that the algorithm got 471

matches correct.

References

 1. Jacques Bughin (2016). Big Data, Big Bang?, Journal of Big Data, 3(2):

1-14.

 2. Muthu, C. and Prakash, M. C. (2015). Impact of Hadoop Ecosystem on Big

Data Analytics, International Journal of Exclusive Management Research -

Special Issue, pp. 88-90.

 3. Wes Mckinney (2012). Python for Data Analysis. O’Reilly Press, USA.

	RETELL_2017_55.pdf
	RETELL_2017_56.pdf
	RETELL_2017_57.pdf
	RETELL_2017_58.pdf

